西诺网

2018诺贝尔生理学或医学奖公布:让治愈癌症成为现实

2018 年 10 月 1 日,北京时间 17 时 30 分许, 美国免疫学家詹姆斯·艾利森(James P Alison)和日本免疫学家本庶佑(Tasuku Honjo)因为在肿瘤免疫领域做出的贡献,荣获 2018 年诺贝尔生理学或医学奖。

  2018年诺贝尔生理学或医学奖得主:美国免疫学家詹姆斯·艾利森(James P Alison)和日本免疫学家本庶佑(Tasuku Honjo)

  詹姆斯·艾利森(James P。 Allison)是美国著名免疫学家,美国得克萨斯大学M·D·安德森癌症中心免疫学研究平台负责人、免疫学教授。艾利森被认为是分离出T细胞抗原(T-cell antigen)复合物蛋白的第一人,他同时发现,如果可以暂时抑制T细胞表面表达的CTLA-4这一免疫系统“分子刹车”的活性,就能提高免疫系统对肿瘤细胞的攻击性,从而缩小肿瘤的体积。他对T细胞发育和激活,以及及免疫系统“刹车”的卓越研究,为癌症治疗开创了全新的免疫治疗思路——释放免疫系统自身的能力来攻击肿瘤。

  艾利森1948年8月7日出生于美国得克萨斯州,在得克萨斯大学奥斯汀分校获微生物学学士学位,后又获生命科学博士学位。他是美国国家科学院院士,霍华德·休斯医学研究所研究员。2014年,他获生命科学突破奖、唐奖生物技术医药奖、霍维茨奖、盖尔德纳国际奖、哈维奖。2015年,艾利森获得有“诺奖风向标”之称的拉斯克临床医学研究奖。

  本庶佑(Tasuku Honjo)日本免疫学家,美国国家科学院外籍院士,日本学士院会员。现任京都大学高等研究院特别教授。

  1942年1月27日,本庶佑出生于日本京都府。1975年取得京都大学医学博士学位。完成学业后,本庶曾在京都大学、东京大学医学部任助手。此一时间,他也兼任了美国卡内基研究所、美国国立卫生研究院的客座研究员,在许多美国研究机关以客座身份活动。1984年开始在京大专职,担任了京都大学基因实验设施的负责人。此后数十年,他又担任过弘前大学教授、京大研究科长、医学部学部长等职。2005年开始转为京大教授。本庶教授建立了免疫球蛋白类型转换的基本概念框架,他提出了一个解释抗体基因在模式转换中变化的模型。1992年,本庶首先鉴定PD-1为活化T淋巴细胞上的诱导型基因,这一发现为PD-1阻断建立癌症免疫治疗原理做出了重大贡献,曾在2013年被《Science》评为年度十大科学突破之首。

  诺贝尔奖官方网站链接:https://www.nobelprize.org/

  2014年,基于“免疫系统刹车”抑制的第一个PD-1抑制剂在美国上市;2018年6月15日,中国食品药品监督管理总局(CFDA)正式批准PD-1抗体纳武利尤单抗注射液(商品名欧狄沃,英文名Opdivo)上市,针对的适应症是“系统治疗的非小细胞肺癌(不包括敏感基因突变患者)”,意味着我国的肿瘤治疗真正进入了“免疫”时代。科研圈找到了 2014年6月发表于《环球科学》的文章,详细介绍了癌症免疫疗法取得的巨大医学进步。

  撰文 杰德· D ·沃夏克(Jedd D。 Wolchok) 

  翻译 戴晓橙

  2004年6月,一位刚从大学毕业的姑娘分到我这里做检查。她那年22岁,刚刚订婚。在毕业前的几个月里,雪莉(化名)一直被咳嗽搞得不得安宁。CT(computed tomographic,即计算机断层扫描)检查发现,她的双肺有多处阴影,而进一步的活组织检查显示,这是一种来自皮肤的恶性肿瘤——转移到肺部的黑色素瘤。雪莉从不知道自己患有黑色素瘤,她马上开始化疗,并匆忙推迟了婚期。

  接下来的两年里,雪莉接受了两轮化疗和脑部放疗,但不幸的是,治疗只减缓了肿瘤的恶化速度,却没能阻止肿瘤的转移。就在快要无计可施时,我告诉她,医院正在开展一种新药的临床试验,这种药物或许可以增强患者自身的免疫系统,使我们的身体有能力自己对抗癌症。

  这是一项随机试验,也就是说,并非每位受试者都能得到这种名叫“MDX-010”的新药,但雪莉还是答应参与试验。经过4个疗程的治疗后,雪莉拍摄了一组新的CT。结果显示,她体内所有的黑色素瘤都消失了。从那以后,雪莉一直保持着无瘤状态。现在她已为人母,有了两个漂亮又健康的孩子。用她自己的话说,她“又找回了自己的人生”。

  在我这样一个肿瘤专家看来,雪莉的痊愈,将人世间的一个夙愿带进了现实:科学家的确可以通过改造人体自身的免疫系统,创造出强大的抗癌疗法。过去一年中,采用与雪莉类似的疗法,或是其他治疗白血病、肾脏与肺部癌症的免疫疗法的患者,纷纷将捷报传来,医学界因此备受鼓舞。尽管免疫疗法并非万能灵药,但对于晚期肿瘤的治疗而言,这一最新成果,无疑是人们在过去几十年间取得的最大进步。

  免疫系统的多重防御

  免疫系统可以遏制肿瘤,这并非新闻。早在100多年前,纽约癌症医院(New York Cancer Hospital,纪念斯隆-凯特琳癌症中心的前身)的外科医生威廉·科利(William Coley)就曾试图用高温杀死的细菌刺激免疫系统,从而对抗恶性肿瘤。科利发现,一些在癌症手术后发生感染的患者,存活的时间似乎更长,他由此猜想,病原体在机体内激起的免疫反应,可能也会对肿瘤造成影响。

  在接下来的几十年里,基础研究领域的科学家对免疫系统进行了深入的研究,揭示了人体防御系统的分子组成、其中的化学介质,以及精确控制该系统的分子开关。在研究的过程中,科学家逐渐了解了免疫系统是如何动员起来,进而去发现可能引起严重感染的病原体(例如细菌和病毒)的。与之同样重要的是,研究人员亦深入理解了免疫系统的“检查”与“平衡”机制,正是因为这些机制的存在,免疫反应才不至于失控,使过多的正常组织受到损伤。总而言之,科学家已经获得了足够的细节信息,知道了免疫系统如何应对肿瘤,而肿瘤又如何影响免疫系统。

  机体的第一层防御机制,包括了对抗细菌与病毒的非特异性免疫反应,这一过程由血液中的白细胞(如中性粒细胞和单核细胞)负责协调。这些细胞隶属于“固有免疫系统”(innate immune system),专门识别细菌或病毒中常见的分子结构——例如部分表面结构,或是有别于高等生物的DNA和RNA分子。尽管这些白细胞并不能特异性地识别并攻击某些蛋白结构,却能抵挡许多微生物的入侵,将其分解成小分子片段——即所谓的“抗原”(antigen)。在这之后,免疫系统的其他成员便会将抗原视为异物,予以消灭。

  负责机体第二层防线的细胞,构成了我们的“适应性免疫系统”(adaptive immune system)。它们的工作始于对抗原的识别,继而发动更为精准的免疫攻击。如果攻击有效,机体就会产生对该种病原的“记忆”,一旦再次遇到相同的入侵病原,便能更轻易地将其击溃。T细胞和B细胞是适应性免疫应答的核心角色。T细胞有多种类型,但它们都发源于胸腺——一个位于胸部正中、心脏上方的组织。B细胞则来自骨髓,能够制造抗体。抗体分子与T细胞上一些特定的分子结构一样,都能够附着在特定的抗原上,免疫系统因此可以锁定目标,消灭细菌和表面带有抗原的受感染细胞。

  当机体识别并消灭有害病原时,固有免疫和适应性免疫若能通力合作,免疫系统便能达到最佳状态。此外,有一类T细胞还能长时间保留分子记忆,以便在相同的威胁再次出现时,更快地发起免疫应答。

  当然,癌症并不同于感染。癌细胞是发生了遗传变异等病理变化的自体细胞,但尽管如此,免疫系统还是能够识别出恶性肿瘤细胞。这是因为,后者会表达异常的分子碎片,对T细胞或者B细胞来说,这些分子碎片相当于异物。然而,在多种因素的作用下,机体对于癌症的免疫应答并没有产生显著的效果。多年以来,研究人员一直致力于刺激机体的免疫系统,强化其对癌症的免疫应答,然而,得到的结果并不稳定。最近,一些更有效、更稳定的治疗手段,将癌症的免疫治疗带到了一个新的方向。研究人员发现,有些时候,癌症可以与免疫系统的“刹车”协同作用,显著抑制机体对恶性肿瘤细胞的免疫应答,而我们所说的“新方向”,正是瞄准免疫系统的“分子刹车”,使之失去效用。

转载请注明出处!:首页 > 科技 » 2018诺贝尔生理学或医学奖公布:让治愈癌症成为现实